Adversarial Deep Learning for Robust Detection of Binary Encoded Malware
نویسندگان
چکیده
Malware is constantly adapting in order to avoid detection. Model based malware detectors, such as SVM and neural networks, are vulnerable to so-called adversarial examples which are modest changes to detectable malware that allows the resulting malware to evade detection. Continuous-valued methods that are robust to adversarial examples of images have been developed using saddle-point optimization formulations. We are inspired by them to develop similar methods for the discrete, e.g. binary, domain which characterizes the features of malware. A specific extra challenge of malware is that the adversarial examples must be generated in a way that preserves their malicious functionality. We introduce methods capable of generating functionally preserved adversarial malware examples in the binary domain. Using the saddle-point formulation, we incorporate the adversarial examples into the training of models that are robust to them. We evaluate the effectiveness of the methods and others in the literature on a set of Portable Execution (PE) files. Comparison prompts our introduction of an online measure computed during training to assess general expectation of robustness.
منابع مشابه
Adversarial Examples on Discrete Sequences for Beating Whole-Binary Malware Detection
In recent years, deep learning has shown performance breakthroughs in many applications, such as image detection, image segmentation, pose estimation, and speech recognition. It was also applied successfully to malware detection. However, this comes with a major concern: deep networks have been found to be vulnerable to adversarial examples. So far successful attacks have been proved to be very...
متن کاملAdversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables
Machine-learning methods have already been exploited as useful tools for detecting malicious executable files. They leverage data retrieved from malware samples, such as header fields, instruction sequences, or even raw bytes, to learn models that discriminate between benign and malicious software. However, it has also been shown that machine learning and deep neural networks can be fooled by e...
متن کاملAttack and Defense of Dynamic Analysis-Based, Adversarial Neural Malware Classification Models
Recently researchers have proposed using deep learning-based systems for malware detection. Unfortunately, all deep learning classification systems are vulnerable to adversarial attacks where miscreants can avoid detection by the classification algorithm with very few perturbations of the input data. Previous work has studied adversarial attacks against static analysisbased malware classifiers ...
متن کاملAdversarial Perturbations Against Deep Neural Networks for Malware Classification
Deep neural networks, like many other machine learning models, have recently been shown to lack robustness against adversarially crafted inputs. These inputs are derived from regular inputs by minor yet carefully selected perturbations that deceive machine learning models into desired misclassifications. Existing work in this emerging field was largely specific to the domain of image classifica...
متن کاملAdversarial Examples for Malware Detection
Machine learning models are known to lack robustness against inputs crafted by an adversary. Such adversarial examples can, for instance, be derived from regular inputs by introducing minor—yet carefully selected—perturbations. In this work, we expand on existing adversarial example crafting algorithms to construct a highly-effective attack that uses adversarial examples against malware detecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.02950 شماره
صفحات -
تاریخ انتشار 2018